Thursday, 22 October 2015

Find the minimum distance between two numbers

Given an unsorted array arr[] and two numbers x and y, find the minimum distance between x and y in arr[]. The array might also contain duplicates. You may assume that both x and y are different and present in arr[].
Examples:
Input: arr[] = {1, 2}, x = 1, y = 2
Output: Minimum distance between 1 and 2 is 1.
Input: arr[] = {3, 4, 5}, x = 3, y = 5
Output: Minimum distance between 3 and 5 is 2.
Input: arr[] = {3, 5, 4, 2, 6, 5, 6, 6, 5, 4, 8, 3}, x = 3, y = 6
Output: Minimum distance between 3 and 6 is 4.
Input: arr[] = {2, 5, 3, 5, 4, 4, 2, 3}, x = 3, y = 2
Output: Minimum distance between 3 and 2 is 1.
Method 1 (Simple)
Use two loops: The outer loop picks all the elements of arr[] one by one. The inner loop picks all the elements after the element picked by outer loop. If the elements picked by outer and inner loops have same values as x or y then if needed update the minimum distance calculated so far.
#include <stdio.h>
#include <stdlib.h> // for abs()
#include <limits.h> // for INT_MAX
 
int minDist(int arr[], int n, int x, int y)
{
   int i, j;
   int min_dist = INT_MAX;
   for (i = 0; i < n; i++)
   {
     for (j = i+1; j < n; j++)
     {
         if( (x == arr[i] && y == arr[j] ||
              y == arr[i] && x == arr[j]) && min_dist > abs(i-j))
         {
              min_dist = abs(i-j);
         }
     }
   }
   return min_dist;
}
 
/* Driver program to test above fnction */
int main()
{
    int arr[] = {3, 5, 4, 2, 6, 5, 6, 6, 5, 4, 8, 3};
    int n = sizeof(arr)/sizeof(arr[0]);
    int x = 3;
    int y = 6;
 
    printf("Minimum distance between %d and %d is %d\n", x, y,
              minDist(arr, n, x, y));
    return 0;
}
Output: Minimum distance between 3 and 6 is 4
Time Complexity: O(n^2)
Method 2 (Tricky)
1) Traverse array from left side and stop if either x or y is found. Store index of this first occurrence in a variable say prev
2) Now traverse arr[] after the index prev. If the element at current index i matches with either x or y then check if it is different from arr[prev]. If it is different then update the minimum distance if needed. If it is same then updateprev i.e., make prev = i.
Thanks to wgpshashank for suggesting this approach.
#include <stdio.h>
#include <limits.h>  // For INT_MAX
 
int minDist(int arr[], int n, int x, int y)
{
   int i = 0;
   int min_dist = INT_MAX;
   int prev;
 
   // Find the first occurence of any of the two numbers (x or y)
   // and store the index of this occurence in prev
   for (i = 0; i < n; i++)
   {
     if (arr[i] == x || arr[i] == y)
     {
       prev = i;
       break;
     }
   }
 
   // Traverse after the first occurence
   for ( ; i < n; i++)
   {
      if (arr[i] == x || arr[i] == y)
      {
          // If the current element matches with any of the two then
          // check if current element and prev element are different
          // Also check if this value is smaller than minimm distance so far
          if ( arr[prev] != arr[i] && (i - prev) < min_dist )
          {
             min_dist = i - prev;
             prev = i;
          }
          else
             prev = i;
      }
   }
 
   return min_dist;
}
 
/* Driver program to test above fnction */
int main()
{
    int arr[] ={3, 5, 4, 2, 6, 3, 0, 0, 5, 4, 8, 3};
    int n = sizeof(arr)/sizeof(arr[0]);
    int x = 3;
    int y = 6;
 
    printf("Minimum distance between %d and %d is %d\n", x, y,
              minDist(arr, n, x, y));
    return 0;
}
Output: Minimum distance between 3 and 6 is 1
Time Complexity: O(n)
Please write comments if you find the above codes/algorithms incorrect, or find other ways to solve the same problem.

No comments:

Post a Comment