Given a binary matrix, find out the maximum size square sub-matrix with all 1s.
For example, consider the below binary matrix.
0 1 1 0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0
The maximum square sub-matrix with all set bits is
    1  1  1
    1  1  1
    1  1  1
Algorithm:
Let the given binary matrix be M[R][C]. The idea of the algorithm is to construct an auxiliary size matrix S[][] in which each entry S[i][j] represents size of the square sub-matrix with all 1s including M[i][j] where M[i][j] is the rightmost and bottommost entry in sub-matrix.
Let the given binary matrix be M[R][C]. The idea of the algorithm is to construct an auxiliary size matrix S[][] in which each entry S[i][j] represents size of the square sub-matrix with all 1s including M[i][j] where M[i][j] is the rightmost and bottommost entry in sub-matrix.
1) Construct a sum matrix S[R][C] for the given M[R][C].
     a) Copy first row and first columns as it is from M[][] to S[][]
     b) For other entries, use following expressions to construct S[][]
         If M[i][j] is 1 then
            S[i][j] = min(S[i][j-1], S[i-1][j], S[i-1][j-1]) + 1
         Else /*If M[i][j] is 0*/
            S[i][j] = 0
2) Find the maximum entry in S[R][C]
3) Using the value and coordinates of maximum entry in S[i], print 
   sub-matrix of M[][]
For the given M[R][C] in above example, constructed S[R][C] would be:
0 1 1 0 1 1 1 0 1 0 0 1 1 1 0 1 1 2 2 0 1 2 2 3 1 0 0 0 0 0
The value of maximum entry in above matrix is 3 and coordinates of the entry are (4, 3). Using the maximum value and its coordinates, we can find out the required sub-matrix.
#include<stdio.h>#define bool int#define R 6#define C 5void printMaxSubSquare(bool M[R][C]){  int i,j;  int S[R][C];  int max_of_s, max_i, max_j;     /* Set first column of S[][]*/  for(i = 0; i < R; i++)     S[i][0] = M[i][0];    /* Set first row of S[][]*/      for(j = 0; j < C; j++)     S[0][j] = M[0][j];        /* Construct other entries of S[][]*/  for(i = 1; i < R; i++)  {    for(j = 1; j < C; j++)    {      if(M[i][j] == 1)         S[i][j] = min(S[i][j-1], S[i-1][j], S[i-1][j-1]) + 1;      else        S[i][j] = 0;    }      }      /* Find the maximum entry, and indexes of maximum entry      in S[][] */  max_of_s = S[0][0]; max_i = 0; max_j = 0;  for(i = 0; i < R; i++)  {    for(j = 0; j < C; j++)    {      if(max_of_s < S[i][j])      {         max_of_s = S[i][j];         max_i = i;          max_j = j;      }            }                   }          printf("\n Maximum size sub-matrix is: \n");  for(i = max_i; i > max_i - max_of_s; i--)  {    for(j = max_j; j > max_j - max_of_s; j--)    {      printf("%d ", M[i][j]);    }      printf("\n");  }  }     /* UTILITY FUNCTIONS *//* Function to get minimum of three values */int min(int a, int b, int c){  int m = a;  if (m > b)     m = b;  if (m > c)     m = c;  return m;}/* Driver function to test above functions */int main(){  bool M[R][C] =  {{0, 1, 1, 0, 1},                    {1, 1, 0, 1, 0},                    {0, 1, 1, 1, 0},                   {1, 1, 1, 1, 0},                   {1, 1, 1, 1, 1},                   {0, 0, 0, 0, 0}};                  printMaxSubSquare(M);  getchar();  }   | 
Time Complexity: O(m*n) where m is number of rows and n is number of columns in the given matrix.
Auxiliary Space: O(m*n) where m is number of rows and n is number of columns in the given matrix.
Algorithmic Paradigm: Dynamic Programming
Auxiliary Space: O(m*n) where m is number of rows and n is number of columns in the given matrix.
Algorithmic Paradigm: Dynamic Programming
Please write comments if you find any bug in above code/algorithm, or find other ways to solve the same problem
No comments:
Post a Comment