Question: Given an array of positive numbers, find the maximum sum of a subsequence with the constraint that no 2 numbers in the sequence should be adjacent in the array. So 3 2 7 10 should return 13 (sum of 3 and 10) or 3 2 5 10 7 should return 15 (sum of 3, 5 and 7).Answer the question in most efficient way.
Algorithm:
Loop for all elements in arr[] and maintain two sums incl and excl where incl = Max sum including the previous element and excl = Max sum excluding the previous element.
Loop for all elements in arr[] and maintain two sums incl and excl where incl = Max sum including the previous element and excl = Max sum excluding the previous element.
Max sum excluding the current element will be max(incl, excl) and max sum including the current element will be excl + current element (Note that only excl is considered because elements cannot be adjacent).
At the end of the loop return max of incl and excl.
Example:
arr[] = {5, 5, 10, 40, 50, 35} inc = 5 exc = 0 For i = 1 (current element is 5) incl = (excl + arr[i]) = 5 excl = max(5, 0) = 5 For i = 2 (current element is 10) incl = (excl + arr[i]) = 15 excl = max(5, 5) = 5 For i = 3 (current element is 40) incl = (excl + arr[i]) = 45 excl = max(5, 15) = 15 For i = 4 (current element is 50) incl = (excl + arr[i]) = 65 excl = max(45, 15) = 45 For i = 5 (current element is 35) incl = (excl + arr[i]) = 80 excl = max(5, 15) = 65 And 35 is the last element. So, answer is max(incl, excl) = 80
Thanks to Debanjan for providing code.
Implementation:
#include<stdio.h> /*Function to return max sum such that no two elements are adjacent */ int FindMaxSum( int arr[], int n) { int incl = arr[0]; int excl = 0; int excl_new; int i; for (i = 1; i < n; i++) { /* current max excluding i */ excl_new = (incl > excl)? incl: excl; /* current max including i */ incl = excl + arr[i]; excl = excl_new; } /* return max of incl and excl */ return ((incl > excl)? incl : excl); } /* Driver program to test above function */ int main() { int arr[] = {5, 5, 10, 100, 10, 5}; printf ( "%d \n" , FindMaxSum(arr, 6)); getchar (); return 0; } |
Time Complexity: O(n)
Now try the same problem for array with negative numbers also.
Please write comments if you find any bug in the above program/algorithm or other ways to solve the same problem.
No comments:
Post a Comment