Given an array of integers, write a function that returns true if there is a triplet (a, b, c) that satisfies a2 + b2 = c2.
Example:
Input: arr[] = {3, 1, 4, 6, 5} Output: True There is a Pythagorean triplet (3, 4, 5). Input: arr[] = {10, 4, 6, 12, 5} Output: False There is no Pythagorean triplet.
Method 1 (Naive)
A simple solution is to run three loops, three loops pick three array elements and check if current three elements form a Pythagorean Triplet.
A simple solution is to run three loops, three loops pick three array elements and check if current three elements form a Pythagorean Triplet.
Below is C++ implementation of simple solution.
// A C++ program that returns true if there is a Pythagorean // Triplet in a given aray. #include <iostream> using namespace std; // Returns true if there is Pythagorean triplet in ar[0..n-1] bool isTriplet( int ar[], int n) { for ( int i=0; i<n; i++) { for ( int j=i+1; j<n; j++) { for ( int k=j+1; k<n; k++) { // Calculate square of array elements int x = ar[i]*ar[i], y = ar[j]*ar[j], z = ar[k]*ar[k]; if (x == y + z || y == x + z || z == x + y) return true ; } } } // If we reach here, no triplet found return false ; } /* Driver program to test above function */ int main() { int ar[] = {3, 1, 4, 6, 5}; int ar_size = sizeof (ar)/ sizeof (ar[0]); isTriplet(ar, ar_size)? cout << "Yes" : cout << "No" ; return 0; } |
Output:
Yes
Time Complexity of the above solution is O(n3).
Method 2 (Use Sorting)
We can solve this in O(n2) time by sorting the array first.
We can solve this in O(n2) time by sorting the array first.
1) Do square of every element in input array. This step takes O(n) time.
2) Sort the squared array in increasing order. This step takes O(nLogn) time.
3) To find a triplet (a, b, c) such that a = b + c, do following.
- Fix ‘a’ as last element of sorted array.
- Now search for pair (b, c) in subarray between first element and ‘a’. A pair (b, c) with given sum can be found in O(n) time using meet in middle algorithm discussed in method 1 of this post.
- If no pair found for current ‘a’, then move ‘a’ one position back and repeat step 3.b.
Below is C++ implementation of above algorithm.
// A C++ program that returns true if there is a Pythagorean // Triplet in a given array. #include <iostream> #include <algorithm> using namespace std; // Returns true if there is a triplet with following property // A[i]*A[i] = A[j]*A[j] + A[k]*[k] // Note that this function modifies given array bool isTriplet( int arr[], int n) { // Square array elements for ( int i=0; i<n; i++) arr[i] = arr[i]*arr[i]; // Sort array elements sort(arr, arr + n); // Now fix one element one by one and find the other two // elements for ( int i = n-1; i >= 2; i--) { // To find the other two elements, start two index // variables from two corners of the array and move // them toward each other int l = 0; // index of the first element in arr[0..i-1] int r = i-1; // index of the last element in arr[0..i-1] while (l < r) { // A triplet found if (arr[l] + arr[r] == arr[i]) return true ; // Else either move 'l' or 'r' (arr[l] + arr[r] < arr[i])? l++: r--; } } // If we reach here, then no triplet found return false ; } /* Driver program to test above function */ int main() { int arr[] = {3, 1, 4, 6, 5}; int arr_size = sizeof (arr)/ sizeof (arr[0]); isTriplet(arr, arr_size)? cout << "Yes" : cout << "No" ; return 0; } |
Output:
Yes
Time complexity of this method is O(n2).
No comments:
Post a Comment